Graph-Based Deep Modeling and Real Time Forecasting of Sparse Spatio-Temporal Data

نویسندگان

  • Bao Wang
  • Xiyang Luo
  • Fangbo Zhang
  • Baichuan Yuan
  • Andrea L. Bertozzi
  • P. Jeffrey Brantingham
چکیده

We present a generic framework for spatio-temporal (ST) data modeling, analysis, and forecasting, with a special focus on data that is sparse in both space and time. Our multi-scaled framework is a seamless coupling of two major components: a self-exciting point process that models the macroscale statistical behaviors of the ST data and a graph structured recurrent neural network (GSRNN) to discover the microscale paŠerns of the ST data on the inferred graph. Œis novel deep neural network (DNN) incorporates the real time interactions of the graph nodes to enable more accurate real time forecasting. Œe e‚ectiveness of our method is demonstrated on both crime and trac forecasting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting

Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic net...

متن کامل

Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting

The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting

The paper presents a spatio-temporal wind speed forecasting algorithm using Deep Learning (DL) and in particular, Recurrent Neural Networks (RNNs). Motivated by recent advances in renewable energy integration and smart grids, we apply our proposed algorithm for wind speed forecasting. Renewable energy resources (wind and solar) are random in nature and, thus, their integration is facilitated wi...

متن کامل

Short-Term Traffic Forecasting: Modeling and Learning Spatio-Temporal Relations in Transportation Networks Using Graph Neural Networks

Short Term Tra c Forecasting: Modeling and Learning Spatio Temporal Relations in Transportation Networks Using Graph Neural Networks

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018